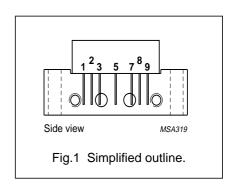

DISCRETE SEMICONDUCTORS

Product specification File under Discrete Semiconductors, SC16 February 1994

Philips Semiconductors

BGD602

FEATURES


- Excellent linearity
- Extremely low noise
- Silicon nitride passivation
- Rugged construction
- Gold metallization ensures excellent reliability.

DESCRIPTION

Hybrid high dynamic range amplifier module designed for applications in CATV systems with a bandwidth of 40 to 600 MHz operating with a voltage supply of 24 V (DC).

PINNING - SOT115J

PIN	DESCRIPTION
1	input
2	common
3	common
5	+V _B
7	common
8	common
9	output

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
G _p	power gain	f = 50 MHz	18	19	dB
		f = 600 MHz	19	_	dB
I _{tot}	total current consumption (DC)	V _B = 24 V	_	435	mA

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
Vi	RF input voltage	-	65	dBmV
T _{stg}	storage temperature	-40	+100	°C
T _{mb}	operating mounting base temperature	-20	+100	°C

BGD602

CHARACTERISTICS

Bandwidth 40 to 600 MHz; V_B = 24 V; T_mb = 35 °C; Z_S = Z_L = 75 $\Omega.$

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
G _p	power gain	f = 50 MHz	18	19	dB
		f = 600 MHz	19	_	dB
SL	slope cable equivalent	f = 40 to 600 MHz	0.2	2.2	dB
FL	flatness of frequency response	f = 40 to 600 MHz	-	±0.3	dB
S ₁₁	input return losses	f = 40 to 80 MHz	20	_	dB
		f = 80 to 160 MHz	19	-	dB
		f = 160 to 600 MHz	18	_	dB
S ₂₂	output return losses	f = 40 to 80 MHz	20	_	dB
		f = 80 to 160 MHz	19	-	dB
		f = 160 to 600 MHz	18	_	dB
S ₂₁	phase response	f = 50 MHz	-45	+45	deg
СТВ	composite triple beat	85 channels flat; $V_o = 44 \text{ dBmV};$ measured at 595.25 MHz	-	-62	dB
X _{mod}	cross modulation	85 channels flat; $V_o = 44 \text{ dBmV};$ measured at 55.25 MHz	-	-66	dB
CSO	composite second order distortion	85 channels flat; $V_o = 44 \text{ dBmV}$; measured at 596.5 MHz	-	-60	dB
d ₂	second order distortion	note 1	-	-70	dB
Vo	output voltage	d _{im} = -60 dB; note 2	63	_	dBmV
F	noise figure	f = 600 MHz	-	8	dB
I _{tot}	total current consumption (DC)	note 3	-	435	mA

Notes

- $\begin{array}{ll} 1. & f_p = 55.25 \mbox{ MHz}; \mbox{ V}_p = 44 \mbox{ dBmV}; \\ f_q = 541.25 \mbox{ MHz}; \mbox{ V}_q = 44 \mbox{ dBmV}; \\ measured \mbox{ at } f_p + f_q = 596.5 \mbox{ MHz}. \end{array}$
- 2. Measured according to DIN45004B: $f_p = 590.25 \text{ MHz}; V_p = V_o;$ $f_q = 597.25 \text{ MHz}; V_q = V_o -6 \text{ dB};$ $f_r = 599.25 \text{ MHz}; V_r = V_o -6 \text{ dB};$ measured at $f_p + f_q - f_r = 588.25 \text{ MHz}.$
- 3. The module normally operates at V_B = 24 V, but is able to withstand supply transients up to 30 V.

BGD602

CHARACTERISTICS

Bandwidth 40 to 550 MHz; V_B = 24 V; T_mb = 35 °C; Z_S = Z_L = 75 $\Omega.$

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
G _p	power gain	f = 50 MHz	18	19	dB
		f = 550 MHz	18.8	-	dB
SL	slope cable equivalent	f = 40 to 550 MHz	0.2	2.2	dB
FL	flatness of frequency response	f = 40 to 550 MHz	-	±0.3	dB
S ₁₁	input return losses	f = 40 to 80 MHz	20	-	dB
		f = 80 to 160 MHz	19	-	dB
		f = 160 to 550 MHz	18	-	dB
S ₂₂	output return losses	f = 40 to 80 MHz	20	-	dB
		f = 80 to 160 MHz	19	-	dB
		f = 160 to 550 MHz	18	-	dB
S ₂₁	phase response	f = 50 MHz	-45	+45	deg
СТВ	composite triple beat	77 channels flat; $V_o = 44 \text{ dBmV}$; measured at 547.25 MHz	-	-66	dB
X _{mod}	cross modulation	77 channels flat; $V_o = 44 \text{ dBmV}$; measured at 55.25 MHz	-	-68	dB
CSO	composite second order distortion	77 channels flat; $V_o = 44 \text{ dBmV}$; measured at 548.5 MHz	-	-62	dB
d ₂	second order distortion	note 1	-	-72	dB
Vo	output voltage	d _{im} = -60 dB; note 2	64	-	dBmV
F	noise figure	f = 550 MHz	-	7.5	dB
I _{tot}	total current consumption (DC)	note 3	-	435	mA

Notes

- $\begin{array}{ll} \mbox{1.} & \mbox{f}_p = 55.25 \mbox{ MHz}; \mbox{ V}_p = 44 \mbox{ dBmV}; \\ \mbox{f}_q = 493.25 \mbox{ MHz}; \mbox{ V}_q = 44 \mbox{ dBmV}; \\ \mbox{ measured at } \mbox{f}_p + \mbox{f}_q = 548.5 \mbox{ MHz}. \end{array}$
- 2. Measured according to DIN45004B: $f_p = 540.25 \text{ MHz}; V_p = V_o;$ $f_q = 547.25 \text{ MHz}; V_q = V_o -6 \text{ dB};$ $f_r = 549.25 \text{ MHz}; V_r = V_o -6 \text{ dB};$ measured at $f_p + f_q - f_r = 538.25 \text{ MHz}.$
- 3. The module normally operates at V_B = 24 V, but is able to withstand supply transients up to 30 V.

BGD602

CHARACTERISTICS

Bandwidth 40 to 450 MHz; V_B = 24 V; T_mb = 35 °C; Z_S = Z_L = 75 $\Omega.$

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
G _p	power gain	f = 50 MHz	18	19	dB
		f = 450 MHz	18.6	-	dB
SL	slope cable equivalent	f = 40 to 450 MHz	0.2	1.8	dB
FL	flatness of frequency response	f = 40 to 450 MHz	-	±0.3	dB
S ₁₁	input return losses	f = 40 to 80 MHz	20	-	dB
		f = 80 to 160 MHz	19	-	dB
		f = 160 to 450 MHz	18	-	dB
S ₂₂	output return losses	f = 40 to 80 MHz	20	-	dB
		f = 80 to 160 MHz	19	-	dB
		f = 160 to 450 MHz	18	-	dB
S ₂₁	phase response	f = 50 MHz	-45	+45	deg
СТВ	composite triple beat	60 channels flat; $V_o = 46 \text{ dBmV}$; measured at 445.25 MHz	-	-67	dB
X _{mod}	cross modulation	60 channels flat; $V_o = 46 \text{ dBmV}$; measured at 55.25 MHz	-	-66	dB
CSO	composite second order distortion	60 channels flat; $V_o = 46 \text{ dBmV}$ measured at 446.5 MHz	-	-60	dB
d ₂	second order distortion	note 1	-	-75	dB
Vo	output voltage	d _{im} = -60 dB; note 2	67	-	dBmV
F	noise figure	f = 450 MHz	-	7	dB
I _{tot}	total current consumption (DC)	note 3	-	435	mA

Notes

- $\begin{array}{ll} \mbox{1.} & \mbox{f}_p = 55.25 \mbox{ MHz}; \mbox{ V}_p = 46 \mbox{ dBmV}; \\ \mbox{f}_q = 391.25 \mbox{ MHz}; \mbox{ V}_q = 46 \mbox{ dBmV}; \\ \mbox{ measured at } \mbox{f}_p + \mbox{f}_q = 446.5 \mbox{ MHz}. \end{array}$
- 2. Measured according to DIN45004B: $f_p = 440.25 \text{ MHz}; V_p = V_o;$ $f_q = 447.25 \text{ MHz}; V_q = V_o -6 \text{ dB};$ $f_r = 449.25 \text{ MHz}; V_r = V_o -6 \text{ dB};$ measured at $f_p + f_q - f_r = 438.25 \text{ MHz}.$
- 3. The module normally operates at V_B = 24 V, but is able to withstand supply transients up to 30 V.

Product specification

BGD602

DEFINITIONS

Data sheet status			
Objective specification	This data sheet contains target or goal specifications for product development.		
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.		
Product specification	This data sheet contains final product specifications.		
Limiting values			
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.			
Application information			

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.